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Abstract
A fundamental description of fluids under confinement is important to our efforts to design
next-generation porous materials with specified characteristics. Computer simulation has been a
great aid in this process, particularly for crystalline materials and materials with regular porous
morphology. The situation is more complex for disordered porous materials, where a molecular
model must capture the essential features of structural disorder on the appropriate length scales.
This presents a serious challenge even with modern computer power. Theoretical methods can
offer a more efficient alternative while providing broad, general insight to systems of interest. In
this article, we review recent advances in theoretical integral equation approaches to molecular
fluids under confinement in disordered media. We focus on replica Ornstein–Zernike-based
approaches, and emphasize interaction site fluid and associating fluid applications. We also
speculate on possible further directions in this rapidly developing field.
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1. Introduction

Porous materials are widely used in chemical, biochemical,
pharmaceutical, oil, gas and other industries as catalysts,
supports, membranes and sensors. Broadly speaking, porous
materials can be classified into crystalline materials, such
as zeolites, and amorphous materials, such as silica gels,
activated carbon materials, controlled porous glasses and
clays. Recently, new families of materials have begun to
emerge. For example, mesoporous molecular sieves are
silicon (or other metal) oxide materials with amorphous solid

structure, but regular, well organized porous morphology.
Metal organic frameworks are crystalline materials formed by
metal complexes and organic linkers and characterized by very
high porosity. Another example is provided by molecularly
imprinted polymers. These materials form in the presence
of templates which, upon extraction, leave cavities in the
structure with molecular complementarity to the template.
These imprinted polymers are therefore capable of molecular
recognition, and can be employed in separation, sensing, drug
delivery and other applications. It has been recognized that
technological progress in a number of key areas will crucially
depend on our ability to design and create porous materials
with tailored, controlled functionalities [1].

The properties and overall function of a porous material
depend sensitively on its structure. A fluid under confinement
exhibits different physical properties from those in the bulk
phase. The presence of solid–fluid interactions in addition to
fluid–fluid interactions may lead to new phenomena and phase
transitions, such as layering, wetting and shifts of freezing
and vapour–liquid transitions. The development of new
materials with specific characteristics requires fundamental
understanding of fluid properties under confinement and, in
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particular, the influence of the solid structure and surface
heterogeneity on these properties. Naturally, there has been
a strong interest in fundamental studies of fluids under
confinement in porous morphologies. An excellent review of
recent experimental and theoretical efforts in this field has been
provided by Gelb and co-workers [2].

Computer simulation and theoretical approaches have
contributed to substantial progress in the areas of crystalline
porous materials and materials with regular pore geometries.
Indeed, the structure of crystalline materials is determined
from x-ray or neutron scattering experiments and thus is well
defined. This structure can then be employed in computer
simulations to study adsorption and transport phenomena.
Studies of various zeolites have been particularly prolific and
successful [3]. Other structures, such as mesoporous molecular
sieves and carbons, are not crystalline yet possess a regular
pore morphology that may be approximated, with varying
degree of accuracy, as cylinders or slits with a distribution
of diameters/widths. In this case, again, the structure of the
solid suggests a fairly straightforward model to be employed
via simulation. Furthermore, density functional theory (DFT)
can be applied to study adsorption phenomena in cylinder and
slit pores as in the series of works by, for example, Evans and
co-workers [4–6] and by Neimark and co-workers [7–10].

The situation is much more complex in the case of
disordered materials, such as controlled porous glass, silica
(and other oxide) gels, activated carbon fibres and foams,
and various types of clays and polymers. In these cases,
the structure of the porous material cannot be unambiguously
identified by x-ray or neutron scattering experiments. Thus,
in order to construct a realistic model of a disordered porous
material to be used in theoretical or computer simulation
studies, one has to rely on other strategies. For example,
it has been shown in a number of experimental studies
that many silica xerogels produced in sol–gel processes are
composed of roughly spherical silica beads with sizes from
tens of nanometres to micrometres [11]. A simple model
of this material would be a system of spherical particles
quenched in space with a density corresponding to that of
the silica material. This is the idea behind the model
of Kaminsky and Monson [12–15]. In fact, their model
was inspired by the more detailed model of MacElroy and
Raghavan, where each silica bead was treated as a collection
of oxygen atoms [16]. Positions of these oxygen atoms
were determined from an additional annealing simulation
based on accurate silica potential. Kaminsky and Monson
derived an analytical potential that treats each silica bead as
a sphere with uniformly distributed Lennard-Jones interaction
sites (provided by oxygen atoms), thus significantly improving
the efficiency of the model. Another example is provided
by a series of studies on amorphous carbon materials. In
these studies, the information about the structure of the
material of interest was limited to carbon–carbon radial
distribution functions from small-angle x-ray and neutron
scattering (SAXS and SANS) and void–void correlations from
TEM micrographs. A Reverse Monte Carlo scheme was
then implemented to generate model structures of porous
materials with characteristics converging towards the target

ones from the experiments [17–20]. This approach has been
extensively applied to reconstruction of disordered carbon
materials [21–23].

Another strategy to generate realistic structures of
disordered porous materials is to imitate the actual process
of their formation. An example of this strategy is provided
by adsorption studies in controlled porous glasses, where
the model structure was generated by mimicking the process
of spinodal decomposition involved in glass formation. An
early study of MacFarland et al used lattice model to imitate
spinodal decomposition of liquid–liquid mixture at subcritical
temperatures [24]. Similar in spirit, a more realistic, large scale
off-lattice model was later proposed and investigated in a series
of works by Gelb and Gubbins [25, 26]. Templated polymer
structures provide another example [27]. As has been already
mentioned, these structures form in the presence of molecular
templates. Van Tassel and co-workers developed a model
of these templated polymers based on a simple protocol that
qualitatively repeats the steps of polymer formation [28–32].
Obviously validation of such models of disordered structures
is a challenging task and the majority of studies are limited to
qualitative insights.

The direct computer simulation of fluids confined
in disordered porous structures represents an enormous
challenge. The strategies described above can be used to
generate a sample of a model porous material, but only of
limited size. Thus, adsorption, transport and other properties
of the confined fluid are specific to a given realization
of the structure, and correlations over longer length scales
are necessarily absent. In order to understand behaviour
of fluids under confinement, properties of the fluids must
be averaged over a representative sample of disorder. In
computer simulation, this problem is resolved by averaging
observed properties of the fluid over many realizations of the
porous structure. This is a computationally daunting task,
especially if each realization requires a separate simulation. In
addition, some fundamental issues such as sufficient size of the
realization and sufficient number of realizations still remain a
subject of an ongoing debate.

An alternative approach is offered within the framework
of integral equation theories of quenched–annealed models,
where a disordered porous structure is treated as a system
of quenched particles. An Ornstein–Zernike-like theory of
a fluid confined in a quenched matrix was first proposed by
Madden and Glandt [33–35] and further refined by Given and
Stell [36, 37] and Rosinberg et al [38]. This theory is at the
heart of the approaches described in this article and we review
it in more detail in the next section.

Most of the theoretical studies in this area so far have
been limited to simple fluids. However, a number of important
problems focus on the behaviour of molecular species, and
progress in this area has been much more modest. The
objective of this article is to review recent developments in the
integral equation theories of confined complex fluids with a
focus on site interaction fluids and associating fluids. We will
also offer some perspectives with a hope to outline the most
interesting current problems in the field and to stimulate further
research in this important area.
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2. Fluids in disordered porous structures

A collection of quenched (i.e. fixed in space) particles often
serves as a simple model of a disordered porous medium.
Such a description captures in a qualitative way the size,
randomness, connectivity, and tortuosity of the pore space
found in real porous materials. As discussed above, it is also
a reasonably realistic model of oxide xerogels. As noted by
Madden and Glandt, a system of fluid molecules adsorbed
within a collection of quenched ‘matrix’ molecules/particles
bears some similarity to a fully equilibrated mixture consisting
of the fluid and the matrix [33]. Employing a diagrammatic
approach, they identified a class of diagrams present in the
equilibrium mixture but absent from the fluid plus quenched
matrix system. Additionally, they proposed a set of Ornstein–
Zernike equations describing the relation between total and
direct correlation functions.

Given and Stell [36, 37, 39] and Rosinberg et al [38] have
noted that a fluid in a quenched matrix system is an example
of a quenched–annealed system, in which certain degrees of
freedom are quenched and others equilibrate with respect to the
quenched ones. To properly apply statistical mechanics, the
annealed partition function must be averaged over quenched
degrees of freedom. For a fluid in a quenched matrix, with
all interaction potentials spherically symmetric, the average
excess Helmholtz free energy of the fluid ( f ) is

−β Āex
f = ln

[
Z f

(�q Nm
)]

= 1

Zm

∫
e−βUm(�q Nm ) ln

[
Z f

(�q Nm
)]

dNm �q, (1)

where �q Nm = �q1, . . . , �qNm is the shorthand for the position
vectors of the Nm matrix (m) molecules, Um is the total
potential energy of the matrix species (due to matrix–matrix
interactions and any external potential), β is 1/kT , k is
the Boltzmann constant, T is the absolute temperature, and
the overbar indicates an average over matrix configurations.
The partition function for the fluid within a given matrix
configuration is

Z f
(�q Nm

) =
∫

e
−βU f

(
�q Nm ,�r N f

)

dN f �r , (2)

where U f is the total potential energy of fluid molecules
(including fluid–fluid, matrix–fluid, and any external potential
interactions), and �r N f = �r1, . . . , �rN f is shorthand for the
position vectors of the N f fluid particles. The partition
function for the matrix species is simply

Zm =
∫

e−βUm(�q Nm ) dNm �q. (3)

Equation (1) may be simplified through the replica method
[40, 41]. Inserting the identity ln x = lim

s→0

xs −1
s = lim

s→0

dxs

ds

into equation (1), one obtains

β Āex
f = − 1

Zm
lim
s→0

∫
e−βUm(�q Nm )

[
Z f

(�q Nm
)]s

dNm �q

= − lim
s→0

d

ds
ln Z rep(s) = lim

s→0

d

ds
β Aex,rep(s), (4)

where Z rep is the configuration integral of a special s + 1
component equilibrated mixture of matrix and s replicas of the
fluid component, defined such that fluid molecules belonging
to different replicas do not interact. Aex,rep is the excess
Helmholtz free energy of this replica mixture.

Equation (4) offers a route toward determining the
thermodynamic and structural properties of the quenched–
annealed systems in terms of those of the fully annealed
replica system. For example, various two-body densities
may be determined via functional differentiation. Assuming
pair potentials such that U f = ∑Nm

i=1

∑N f

j=1 vm f (�qi , �r j ) +
1
2

∑N f

i=1

∑N f

j=1 v f f (�ri , �r j ), we have

ρ
(2)
f f (�r1, �r2) = ρ

(2)
f f

(�r1, �r2, �q Nm
) = N f (N f − 1)

Zm

×
∫

e−βUm
1

Z f
(�q Nm

)
∫

e−βU f d�r3 . . . d�rN f d�q1 . . . d�qNm

= 2
δβ Āex

f

δβv f f (�r1, �r2)
= 2 lim

s→0

d

ds

[
δβ Aex,rep(s)

δβv f f (�r1, �r2)

]

= lim
s→0

d

ds

[
sρ(2)rep

f f (�r1, �r2; s)
]

= ρ
(2)rep
f f (�r1, �r2; s = 0)

(5)

ρ
(2)
m f (�q1, �r1) = Nm N f

Zm

∫
e−βUm

1

Z f
(�q Nm

)

×
∫

e−βU f d�r2 . . . d�rN f d�q2 . . . d�qNm

= δβ Āex
f

δβvm f (�q1, �r1)
= lim

s→0

d

ds

[
δβ Aex,rep(s)

δβvm f (�q1, �r1)

]

= lim
s→0

d

ds

[
sρ(2)rep

m f (�q1, �r1; s)
]

= ρ
(2)rep
m f (�q1, �r1; s = 0) .

(6)

It is also useful to consider a second order functional derivative
with respect to the external potential for the fluid component
u f (�r):

δ2β Āex
f

δβu f (�r1) δβu f (�r2)
= −ρ

(2)

f f (�r1, �r2) − ρ f (�r1) δ (�r1 − �r2)

+ ρ f
(�r1, �q Nm

)
ρ f

(�r2, �q Nm
)

= lim
s→0

d

ds

[
δ2β Aex,rep(s)

δβu f (�r1) δβu f (�r2)

]

= lim
s→0

d

ds
[−sρ(2)rep

f f (�r1, �r2; s) − sρrep
f (�r1; s) δ (�r1 − �r2)

− s(s − 1)ρ
(2)rep
f f2

(�r1, �r2; s) − s2ρ
rep
f (�r1; s) ρ

rep
f (�r2; s)]

= −ρ
(2)rep
f f (�r1, �r2; s = 0) − ρ

rep
f (�r1; s = 0) δ (�r1 − �r2)

+ ρ
(2)rep
f f2

(�r1, �r2; s = 0) . (7)

Through equation (7), we identify the s = 0 limit of the
two-body density among distinct replica species (i.e. species f
and f2) with the two-body density of the quenched–annealed
system ρ f (�r1, �q Nm )ρ f (�r2, �q Nm ); although distinct fluid species
have no interaction with one another, this two-body density
generally deviates from the product ρ f (�r1)ρ f (�r2) due to
correlations with matrix molecules.
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A set of Ornstein–Zernike (OZ) equations for the s + 1
component replica system is given by

hrep
mm = crep

mm + ρrep
m crep

mm ⊗ hrep
mm + sρrep

f crep
m f ⊗ hrep

m f (8)

hrep
m f = crep

m f + ρrep
m crep

mm ⊗ hrep
m f + ρ

rep
f crep

m f ⊗ hrep
f f

+ (s − 1)ρ
rep
f crep

m f ⊗ hrep
f f2

(9)

hrep
f f = crep

f f + ρrep
m crep

m f ⊗ hrep
m f + ρ

rep
f crep

f f ⊗ hrep
f f

+ (s − 1)ρ
rep
f crep

f f2
⊗ hrep

f f2
(10)

hrep
f f2

= crep
f f2

+ ρrep
m crep

m f ⊗ hrep
m f + ρ

rep
f crep

f f ⊗ hrep
f f2

+ ρ
rep
f crep

f f2
⊗ hrep

f f + (s − 2)ρ
rep
f crep

f f2
⊗ hrep

f f2
, (11)

where hrep
i j = ρ

(2)rep
i j /ρ

rep
i ρ

rep
j − 1 is the two-body total

correlation function between species i and j , crep
i j is the two

body direct correlation function between species i and j ,
and ⊗ denotes a convolution integral. Note the simplified
form engendered by the identicalness of the s replica species.
Taking the s = 0 limit, and using the relations established
in equations (5)–(7), we obtain the OZ equations for the
quenched–annealed system

hmm = cmm + ρmcmm ⊗ hmm (12)

hm f = cm f + ρmcmm ⊗ hm f + ρ f cm f ⊗ hC (13)

h f f = c f f + ρmcm f ⊗ hm f + ρ f cC ⊗ h f f + ρ f cB ⊗ hC (14)

hC = cC + ρ f cC ⊗ hC , (15)

where hi j and ci j are the total and direct correlation functions,
and the fluid–fluid correlations are expressed as h f f = hC +
hB, c f f = cC + cB, with hB = hrep

f f2
(s = 0) and cB =

crep
f f2

(s = 0) being the ‘blocking’ portion, so called due to
a diagrammatic structure in which all paths connecting fluid
root points pass through at least one matrix field point. In the
special case of a vanishing external potential, the correlation
functions of equations (12)–(15) become dependent only on
the scalar separation distance between molecular centres.

As is typical of OZ approaches, equations (12)–(15)
require additional closure relations in order to yield a full
solution. The Percus–Yevick (PY) approximation is one such
option

ci j(r) = fi j (r)yi j(r), (16)

where fi j is the Mayer function defined as fi j (r) =
e−βvi j (r) − 1, with vi j being the pair potential, and
yi j(r) = eβvi j (r)[hi j(r) + 1]. Another common closure is the
hypernetted chain (HNC) approximation,

ci j(r) = −βvi j + hi j(r) − ln
[
1 + hi j(r)

]
. (17)

In order to determine blocking contributions to fluid–fluid
correlation function, equations (16), and (17) are applied to
correlations between different replica species f and f2, where
the pair potential v f f2 is identically zero.

Thermodynamic properties may be determined by the
usual routes, keeping in mind the special properties of
the quenched–annealed system and its relation to the fully
annealed replica system. For example, the chemical potential

may be determined by the compressibility route, starting with
the relation
(

∂ρ f

∂βμ f

)

T

= 1

V Zm

∫
e−βUm

[
ρ

(2)

f f

(�r1, �r2, �q Nm
)

− ρ f
(�r1, �q Nm

)
ρ f

(�r2, �q Nm
) + ρ f

(�r1, �q Nm
)
δ (�r1 − �r2)

]

× d�r1 d�r2 dNm �q = ρ2
f ĥC(k = 0) + ρ f , (18)

where V is the system volume and ĥC(k) is the 3D Fourier
transform of hC(r). Combining with equation (15), one obtains
an expression for the excess chemical potential:

βμex
f

(
ρ f

) − βμex
f

(
ρ f = 0

) = −
∫ ρ f

0
ĉC

(
k = 0, ρ ′

f

)
dρ ′

f .

(19)
Another route toward the chemical potential involves

introducing a coupling factor ξ into the intermolecular
potential, such that for ξ = 1, an additional fluid molecule
is fully coupled to the original molecules, for 0 < ξ < 1, the
additional molecule is only partially coupled, and for ξ = 0,
no additional molecule is present. These ideas lead to

βμ
ex,rep
f = −∂ ln Z rep

∂ N f
= −

∫ 1

0

∂ ln Z rep

∂ξ
dξ

= −
∫ 1

0

[
ρm

∫
grep

m f

∂βvm f

∂ξ
d�r + ρ f

∫
grep

f f

∂βv f f

∂ξ
d�r

+ (s − 1)ρ f

∫
grep

f f2

∂βv f f2

∂ξ
d�r

]
dξ. (20)

Employing the identity βvi j = hi j − ci j − ln(hi j + 1) + Bi j

(where Bi j is the bridge function, defined in terms of its
diagrammatic structure and approximated by various closure
relations [42]), taking the s = 0 limit, and assuming (in
two, but not all, integration steps) correlation functions to vary
linearly with the parameter ξ allows one to write equation (20)
as [43]

βμex
f = ρm

∫ [
h2

m f

2
− cm f + hm f cm f

2
+ Bm f + hm f Bm f

− hm f

γm f

∫ γm f

0
Bm f (γ ) dγ

]
d�r

+ ρ f

∫ [
h2

f f

2
− c f f + h f f c f f

2
+ B f f + h f f B f f

− h f f

γ f f

∫ γ f f

0
B f f (γ ) dγ

]
d�r , (21)

where the Bridge function Bi j is assumed to depend on
γi j = hi j − ci j . Thus, this approach provides a direct
method for the excess chemical potential of a fluid. As
seen from equation (21) sufficient information about the
excess chemical potential of a fluid in a particular state
is provided solely by the pair correlation functions for the
fluid at that state; therefore this approach alleviates the need
for computationally intensive integration protocols as needed
e.g. in the compressibility route. In principle, equation (21) is a
general formula independent of the method used for calculation
of the required pair correlation functions. One interesting
avenue of research would be to adapt this method to calculate
the excess chemical potential via computer simulation. The

4
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idea is to generate the required total correlation function in
a computer simulation, and then apply the OZ equations to
generate the direct correlation function. Calculation of the
bridge function is a more difficult task in computer simulation.
Instead, a particular approximate closure can be employed to
achieve this. Equation (21) is then used to calculate the excess
chemical potential. Thus, this approach mixes data obtained
from a computer simulation with an approximate integral
equation theory, which is an obvious weakness. However, it
may provide a relatively quick, yet possibly still quite accurate,
route to the chemical potential. Accuracy and efficiency of this
approach compared to other routes, such as particle insertion
methods, are yet to be established.

3. Interaction site fluids in disordered
porous structures

The standard Ornstein–Zernike (OZ) approach describes
equilibrium systems consisting of spherically symmetric
molecules. The OZ method may also be generalized to
non-spherical molecules, but the equations become much
more complicated and advanced methods, such as spherical
harmonic expansions, are often required [44]. Alternatively,
when the non-spherical molecules consist of a collection of
linked sites (e.g. the atoms of a molecule), then the reference
interaction site model (RISM), also known as the site–site OZ
approach (SSOZ) may be employed [45–48]. Within RISM,
molecules are modelled as collections of linked, spherically
symmetric sites. Total and direct correlation functions between
sites on different molecules are considered, in analogy to the
standard OZ approach. In addition, intra-molecular correlation
functions are employed. The RISM equations for a single
component system read

hαβ =
∑

λ

∑

μ

wαλ ⊗ cλμ ⊗ wμβ+ρ
∑

λ

∑

μ

wαλ ⊗ cλμ ⊗ hμβ,

(22)
where hαβ , cαβ , and wαβ are (respectively) the total, direct,
and intra-molecular correlation functions between sites α and
β , ρ is the number density of the molecular species, and ⊗ is a
convolution integral. Equation (22) may be simplified through
Fourier transform and written in matrix form as

H = WCW + ρWC H, (23)

where H , C , and W are square matrices whose αβ element is
ĥαβ , ĉαβ , and ŵαβ respectively, with â(k) = ∫

a(r)e−i�k·�r d�r .
In the case of rigid molecular species (i.e. sites fixed in

terms of relative positions), the intra-molecular correlations are
known via

wαβ(r) = δ(r − Lαβ)

4π L2
αβ

, (24)

where δ is the one-dimensional delta function and Lαβ is the
centre to centre distance between sites α and β on a given
molecule. The Fourier transform is simply ŵαβ(k) = sin(kLαβ )

kLαβ
.

Schweizer and Curro have proposed a special case of
RISM when the molecular species in question is composed of
many nearly identical sites, such as a long homopolymer [49].

In this case, the site–site total and direct correlation functions
become essentially independent of site index, so equation (22)
simplifies to

ĥ = ŵĉŵ + ρNŵĉĥ, (25)

where h = hαβ , c = cαβ , and ŵ = ∑N
λ=1 ŵαλ = ∑N

μ=1 ŵμβ

are assumed independent of α and β , and N is the number of
sites along the polymer chain. This polymer RISM approach is
often referred to as PRISM.

As is typical in integral equation approaches, closure
relations are needed to solve sets of equations as in
equation (23). Some examples parallel those given in
equations (16), and (17). In addition, various thermodynamic
routes are available. For example, integration of the
compressibility

∂μ

∂ρ
= −kT ĉαβ(k = 0) (26)

yields the chemical potential μ, where any pair of indices may
be inserted for α and β . Another such route is by integration
of the internal energy,

∂
(

F
V T

)

∂
(

1
T

) = U

V
= 2πρ

∑

α

∑

β

∫ ∞

0
vαβ(r)

[
hαβ(r) + 1

]
dr ,

(27)
where F is the Helmholtz energy and U is the total internal
energy.

Kovalenko and Hirata have combined the replica OZ
approach with the RISM method to obtain a set of integral
equations for modelling a molecular fluid adsorbed within a
quenched matrix [50]:

Hmm = WmCmm Wm + ρm WmCmm Hmm (28)

Hmf = WmCm f W f + ρm WmCmm Hm f + ρ f WmCm f HC (29)

H f f = W f C f f W f + ρm W f Cm f Hmf + ρ f W f CC HB

+ ρ f W f C f f HC (30)

HC = W f CC W f + ρ f W f CC HC . (31)

In equations (28)–(31), again the subscripts m and f stand
for matrix and fluid components as before, respectively, and
the matrices therein contain elements âαβ

i j (k), where a is a
total, direct, or intermolecular correlation function, i and
j correspond to matrix and/or fluid species, and α and β

correspond to sites on species i and j . The subscripts C and
B refer to ‘connected’ and ‘blocking’ correlation functions,
which can be defined in the manner discussed in section 2.
Specifically, the diagrams contributing to hαβ

C and cαβ

C contain
at least one path connecting the fluid root points that does not
pass through any matrix field points, and hαβ

B = hαβ

f f − hαβ

C and

cαβ

B = cαβ

f f − cαβ

C .
Kovalenko and Hirata used a combination of the standard

HNC closure and the partially linearized HNC closure to
solve equations (28)–(31) for a model of water adsorbed
within a matrix of bare carbon and carboxylic acid activated
carbon [50]. Specifically, they applied equation (17) for
the blocking portion of the site–site fluid–fluid correlations,
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and the below equation for the site–site matrix–matrix (mm),
matrix–fluid (m f ), and fluid–fluid ( f f ) correlations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cαβ

i j = hαβ

i j − v
αβ

i j

kT
− ln

(
1 + hαβ

i j

)
hαβ

i j < 0

cαβ

i j = −v
αβ

i j

kT
hαβ

i j > 0.

(32)

The idea here is to linearize the logarithm of the standard
HNC approximation for positive values of the total correlation
function, in order to keep its value from being too large
at separations where the potential energy is large and
negative [51].

Tanimura et al extended this model to investigate
the electric double layer within a nanoporous carbon
supercapacitor [52, 53]. The partially linearized HNC closure
was again employed for mm, mf, and ff correlations, but
a modified Verlet approximation to the bridge function was
used to determine the blocking correlations. Matrix properties
were chosen to be those of activated carbon and carbonized
poly(vinylidine chloride), and it was determined that the
mechanism behind the large experimentally determined
capacitance involves the solvation structure and chemical
potential of the electrolyte solution within the entire
electrode—and not simply within the Helmholtz layer at the
electrode surface. A particular interesting observation was
that nanoporous confinement tends to increase the degree of
hydration for cations, while decreasing that for anions (the
latter tend to adsorb directly to the carbon surface).

By combining the Madden–Glandt OZ equations [33]
with the PRISM method (equation (25)), Chandler [54] and
Thompson and Glandt [55, 56] have developed a theoretical
framework to treat long chain molecules adsorbed within
a quenched matrix. Employing an ideal freely jointed
chain approximation for w(r) and a Percus–Yevick closure,
Thompson and Glandt calculated the correlation functions for
hard sphere polymers of various length and density within
a quenched hard sphere matrix [55]. These results revealed
enhanced correlation holes, i.e. regions of low probability
of finding neighbouring segments from different chains, for
low density or high length polymers. In further work, these
authors employed the more accurate Koyama hard sphere chain
intra-molecular correlation function, together with a coupling
parameter approach toward the polymer chemical potential,
to calculate the partition coefficient for a polymer between
a quenched matrix and a bulk solution [56]. An interesting
observation was that the concentration effect on partitioning
is driven by deviations from ideality—in the bulk solution
at lower concentration and in the pore solution at higher
concentration.

Yethiraj and co-workers have combined the replica OZ
equations (equations (12)–(15)) with the PRISM approach to
investigate polymer adsorption within a quenched disordered
medium [57, 58]. Using a Percus–Yevick closure and a
variational approach toward a self-consistent intra-molecular
correlation function, they were able to capture many of
the interesting physical features of hard sphere chains in
disordered media observed in computer simulation, such as the

non-monotonic relation between chain extension and matrix
density.

Motivated by experimental efforts to engineer pore spaces
using sacrificial template species, Sarkisov and Van Tassel
have developed a RISM-based approach to model molecular
adsorption in a templated porous material [59, 60]. The idea
is to consider a binary matrix system with one component (the
template) removed. Replica OZ equations may be written, and
in the s = 0 limit become

Hmm = WmCmm Wm + ρm WmCmm Hmm + ρt WmCmt Hmt (33)

Hmt = WmCmt Wt + ρm WmCmm Hmt + ρt WmCmt Htt (34)

Htt = Wt Ctt Wt + ρm Wt Cmt Hmt + ρt Wt Ctt Htt (35)

Hmf = WmCm f W f + ρm WmCmm Hm f + ρt WmCmt Ht f

+ ρ f WmCm f HC (36)

Ht f = Wt Ct f W f + ρm Wt Ctm Hm f + ρt Wt Ctt Ht f

+ ρ f Wt Ct f HC (37)

H f f = W f C f f W f + ρm W f Cm f Hmf + ρt W f Ct f Ht f

+ ρ f W f CC HB + ρ f W f C f f HC (38)

HC = W f CC W f + ρ f W f CC HC, (39)

where the subscripts m, t and f represent matrix, template,
and fluid components. It is important to note the necessity
to account for template–fluid (t f ) correlations. Although the
template is removed from the system prior to entry of the
fluid, these species are nonetheless spatially correlated owing
to the presence of the matrix component. These authors have
employed equations (33)–(39) along with various closures and
thermodynamic routes to study adsorption of clusters of hard
spheres as well as hard sphere plus attractive tail systems.
(We note that Tanimura et al also employ a template species.
However, their approach involves the original replica RISM
equations, equations (28)–(31) [52, 53].) This integral equation
approach was able to predict modestly selective adsorption
due to differences in molecular shape, such as linear versus
compact clusters of interaction sites. However, strongly
selective adsorption was only observed for interaction site
systems with attractive tail potentials.

Sarkisov has developed a RISM-based approach to
determine the pair connectedness of a templated porous
material [61]. In general, the objective of a pair connectedness
analysis is, given a system of objects or particles, to determine
the distribution of clusters formed by these particles. The
particles may also form an infinite cluster spanning the entire
system, and this effect is usually studied within a broader
context of percolation analysis. This analysis is important
in a number of physical phenomena and systems, including
condensation and gelation processes, dispersed conductive
materials, chemical association processes and properties of
disordered media. An Ornstein–Zernike-like integral approach
for the pair connectedness function has been put forward
by Coniglio and co-workers [62, 63]. The solution to this
equation can be obtained with the connectedness version of the
Percus–Yevick closure. In a close analogy to the isothermal
compressibility equation, it is possible to derive a similar
expression for the average cluster size in the system. The
divergence of this property signifies the onset of the percolation
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effect. This approach has been applied to a number of
systems including randomly placed spheres, adhesive spheres
and extended sphere model of DeSimone et al [64–68]. Later,
Lupkowski and Monson [69] and Leung and Chandler [70]
extended this approach to molecular systems by combining
the pair connectedness formalism with site–site interaction
theories such as the RISM and Chandler–Silbey–Ladanyi
theory [71]. This analysis extended to the templated quenched–
annealed system provides insights on the connectivity of the
matrix, template and adsorbed fluid components. The first
property characterizes the integrity of the matrix, whereas the
two remaining characteristics can be related to the accessibility
of the porous space [61].

4. Associating fluids in disordered porous structures

In this section we focus on theories of associating fluids
under confinement in disordered porous structures. The
term ‘associating fluids’ generally encompasses both fluids
undergoing a chemical reaction to form more complex
molecular species and fluids interacting with strong, short
range intermolecular potentials. An example of the latter
one is a hydrogen bond, which in addition to being strong
and relatively short ranged, is also directional. Clearly,
the fundamental understanding of the behaviour of these
fluids in porous structures is important for a number of
problems, such as chemical reaction equilibria in porous
media, behaviour of polar liquids under confinement and
many other phenomena. Several theoretical treatments of
associating fluids have been proposed over the years including
Pratt and Chandler [72–74] and Cummings and Stell [75, 76]
theories. An early study of associative fluids in disordered
porous networks attempted to capture the process of fluid–fluid
association via a strong square-like potential, with the rest of
the ROZ formalism remaining intact [77]. However, the theory
of Wertheim [78–83] seems to be particularly well adapted
to studies of associating fluids under confinement. Following
closely the original work of Trokhymchuk et al [84], here we
use an example of a dimerizing fluid in a matrix of quenched
particles to outline the basic elements of the theory.

Consider species where a spherical particle bears an
additional binding site. When two such sites of two particles
come in close proximity with each other they associate via
a strong attractive potential. The interaction site is small
compared to the main particle and thus steric hindrance
prevents more then two particles associating with each other.
This association can be treated as a chemical bond formation
or a hydrogen bond depending on the system. For two such
particles the intermolecular potential can be formulated in the
following way:

v
(12)
f f = vR

f f (r12) + vA
f f (x12), (40)

where vA
f f (x12) is the associative potential between attractive

sites on two molecules, this potential depends on the distance
x12 between two sites; vR

f f (r12) is the non-associative term. For
example, it can be simply a hard sphere potential:

vR
f f (r12) =

{∞ r12 � σ

0 r12 > σ,
(41)

where r12 is the distance between fluid particles and σ is
the collision diameter. The non-associative and associative
terms combined form a total intermolecular potential v f f (12)

which depends on the distance and mutual orientation of
two particles. Splitting of the interaction potential into two
contributions also allows one to decompose the Mayer function
into two contributions:

f f f (12) = e f f (12) − 1 = f R
f f (r12) + eR

f f (r12) f A
f f (12)

= f R
f f (r12) + F A

f f (12), (42)

where e(12) = e−v f f (12)/kT ; f R
f f (r12) is the Mayer function

for the non-associative term of the potential; eR
f f (r12) =

e−vR
f f (r12)/kT ; these last two terms depend on the distance

between fluid particles only. f A
f f (12) is the Mayer function

for the associative term and depends on the mutual orientation
of two molecules.

Thus, any diagram expansion involving f -bonds can be
reformulated by replacing each f -bond with either f R

f f (r12)

bond or F A
f f (12). As a result, the graphical expansion in ρ(1)

will contain two classes of diagrams: one class where the
labelled point 1 has no incident F A

f f (12) bond and the second
class where the labelled point 1 is involved in the associating
bond. Each class of diagrams can be viewed as a separate
expansion with the first one corresponding to the monomer
density and the second one to the density of particles that have
associations (not exceeding dimers in our example). In essence
we now consider a system of two species, one being monomer
particles and the other being particles that participate in dimers.
This two densities formalism is at the heart of the Wertheim
approach. The standard tools of statistical mechanics allow us
then to formulate a set of equations, analogous to the Ornstein–
Zernike, to describe two particle correlation functions for this
system.

A replica procedure described in section 2 can now be
extended to associating fluids. Again, one starts with an
equilibrium mixture of matrix (m) and s replicas of fluid ( f )
components. For this system a set of associative Ornstein–
Zernike equations is formulated. Taking the limit of s = 0
we obtain the Associative Replica Ornstein Zernike (AROZ)
equations:

hmm = cmm + ρmcmm ⊗ hmm (43)

hα
f m = cα

f m + ρmcα
f m ⊗ hmm +

∑

μν

ρ
μν

f cαμ

C ⊗ hν
f m (44)

hαβ

f f = cαβ

f f +ρmcα
f m⊗hβ

m f +
∑

μν

ρ
μν

f

[
cαμ

C ⊗ hνβ

f f + cαμ

B ⊗ hνβ

C

]

(45)
hαβ

C = cαβ

f f,C + ρmcα
f m ⊗ hβ

m f +
∑

μν

ρ
μν

f cαμ

C ⊗ hνβ

C , (46)

where the first equation describes two particle correlation
functions for the matrix component m; the second equation
describes matrix–fluid correlations; and the last two equations
deal with the two particle correlations in the fluid component f
in complete analogy with the equations (12)–(15). The Greek
indices in equations (43)–(46) take value 0 if a particle is a
monomer and 1 if a particle forms a bond. In a complete
analogy with the ROZ formalism of section 2 the blocked and
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connected parts in equations (43)–(46) are defined and related
as:

hαβ

f f = hαβ

C + hαβ

B (47)

cαβ

f f = cαβ

C + cαβ

B (48)

and their physical meaning is the same as for the ROZ
equations as discussed elsewhere. The matrix of density terms
in equations (43)–(46) is:

ρ
αβ

f =
(

ρ00
f ρ01

f

ρ10
f ρ11

f

)
=

(
ρ f ρ0

f

ρ0
f 0

)
, (49)

where ρ0
f is the number density of monomers. Following the

original Wertheim prescription, there must be a self-consistent
relationship for the densities:

ρ f = ρ0
f + (

ρ0
f

)2
∫

dr F A
f f y11

f f , (50)

where y11
f f is the cavity distribution function for the confined

fluid species.
Similarly to the standard OZ approach, solution of equa-

tions (43)–(46) must be accompanied by the corresponding clo-
sures. Associative, or polymer, Percus–Yevick has been pro-
posed following the original Wertheim development [83]; how-
ever, for studies of confined fluids the associative version of
the hypernetted chain closure (AHNC) is more adequate. For
fluid–matrix correlations this closure reads:

c0
f m = (1 + f f m) exp(γ 0

f m) − 1 − γ 0
f m (51)

c1
f m = (1 + f f m) exp(γ 0

f m)γ 0
f m − γ 0

f m, (52)

where, γ = h − c, following the notation adopted throughout
the article. Again, in the spirit of the Wertheim theory these
two equations represent two variations of the closure, one
written for the fluid particles in the form of monomers and
the other for the fluid particles that have bonds associated with
them. Similarly, for fluid–fluid correlations:

c00
f f = (1 + f R

f f ) exp(γ 00
f f ) − 1 − γ 00

f f (53)

c10
f f = (1 + f R

f f ) exp(γ 00
f f )γ

10
f f − γ 10

f f (54)

c11
f f = (1 + f R

f f ) exp(γ 00
f f )

((
γ 10

f f

)2 + γ 11
f f

)
− γ 11

f f

+ exp(γ 11
f f )F A

f f . (55)

For the blocking direct correlation functions these equations
simplify to:

c00
B = exp(γ 00

B ) − 1 − γ 00
B (56)

c10
B = exp(γ 00

B )γ 10
B − γ 10

B (57)

c11
B = exp(γ 00

B )
((

γ 10
B

)2 + γ 11
B

)
− γ 11

B . (58)

Partial matrix–fluid and fluid–fluid correlations calculated
from equations (43)–(46) can be combined to produce the
complete correlation functions, for example:

h f m = h0
f m + x f h1

f m (59)

h f f = h00
f f + 2x f h10

f f + x2
f h11

f f , (60)

where

x f = ρ0
f

ρ f
(61)

is the fraction of monomer fluid particles.
Again the correlation functions obtained in this fashion

have to be linked to the thermodynamic properties of the
system with the compressibility route being one of the possible
options:

β

(
∂ P

∂ρ f

)

T

= 1 − ρ f

∫
drcC . (62)

These are the basic elements of the theory of associating
fluids confined in a matrix formed by quenched particles. In
the original article of Trokhymchuk et al [84], the theory was
applied to Kaminsky and Monson (KM) model, proposed for
studies of methane adsorption in xerogels [12–15]. It has been
demonstrated that dimerization of fluid particles in KM matrix
increases with the adsorbed fluid density and that this effect is
more pronounced in matrices with higher densities and at lower
temperatures of the system. The structure of dimerizing fluid
in hard sphere matrices has been also explored and compared
with Monte Carlo simulation. In particular, an assessment
of the associative PY and HNC closure was made and it was
concluded that the associative HNC closure performs better in
the prediction of the structure of dimerizing fluids. Structure,
adsorption and vapour–liquid phase behaviour of dimerizing
hard disks in a hard disk matrix has also been investigated [85].
The issue of dimerizing fluid has been revisited by Padilla et al
for the case of hard sphere particles dimerizing in disordered
hard sphere matrices [86].

This approach also opened a possibility of studying a
range of associating models and systems. One particularly
interesting model is a model of water proposed by Nezbeda
and co-workers [87–89]. In this model a hard sphere particle
is decorated with four interaction sites of two different types
in tetrahedral arrangement. As a result, the model is capable
of imitating the network of hydrogen bonds in water. Orozco
and co-workers and Kovalenko and Pizio adopted this model
to study its properties under confinement within the AROZ
formalism [90, 91]. Other models constructed in the same
spirit ensued. Polymerization of two binding site model in bulk
has been investigated by Chang and Sandler [92, 93], whereas
Pizio and co-workers investigated properties of this model
under confinement [94]. In the work of Pizio and co-workers,
matrix particles were either impermeable to the fluid species
or permeable so that the surface of a matrix particle behaves
as a permeable membrane of a finite width. A particularly
interesting analysis in that work is related to the behaviour of
the partitioning coefficient as a function of the adsorbed fluid
chemical potential. The partition coefficient is simply a ratio
of adsorbed fluid density and the corresponding bulk density at
the same chemical potential. In the absence of polymerization
this is a monotonously increasing function of the chemical
potential. Polymerization, however, leads to formation of
bulky chains. Formation of these chains is also promoted by
higher fluid density. As a result, the partition coefficient for
polymerizing species exhibit a characteristic minimum at a
certain value of chemical potential. This minimum is lower
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and shifted to lower value of chemical potential as the strength
of association is increased.

In general, all these models of associating fluids in a
disordered quenched matrices exhibit several common features
that are summarized here. Stronger association leads to higher
adsorbed densities at a given chemical potential. The critical
temperature of the vapour–liquid transition also increases with
the stronger association. At the same time confinement,
in general, suppresses the transition leading to a lower
critical temperature. Thus, the two factors (association and
confinement) work in opposite directions and a number of
interesting effects are induced by this competition.

Recently, more studies of water under confinement
emerged. This is important for a number of technological
applications such as adsorption, drying and polyelectrolyte
membranes. On the other hand, the interior space of a
living cell is a very crowded environment and properties of
water in this environment are also affected by confinement.
Thus, studies of water confined in disordered morphologies
are important in understanding cell functions. One example of
theoretical studies of confined water, provided by Kovalenko
and Hirata [50], has already been discussed in the previous
section. Recently, Urbic et al applied the AROZ formalism to
study properties of two dimensional water particles in a system
of quenched Lennard-Jones disks [95]. Their model of water is
a Lennard-Jones disk with three radial arms in Mercedes-Benz
logo arrangement to form hydrogen bonds (hence the name
Mercedes-Benz model). The model, originally proposed by
Ben-Naim [96], is able to predict density anomaly, minimum
in isothermal compressibility as a function of temperature
and other qualitative features of water. Having a relatively
small number of quenched Lennard-Jones obstacles in the
system induces more order in the structure of the system
and increased compressibility, in agreement with simulation
studies and experiments. However, in a high density matrix the
trends reverse, leading to a reduction of order in the structure
of the fluid and a reduction of compressibility. This effect is
associated with the disruption of the hydrogen bond network at
higher densities of quenched obstacles.

The AROZ approach is general and flexible in considering
a range of other systems and scenarios. For example, an
effect of matrix polymerization (as oppose to fluid species)
has been investigated by Labik et al [94]. Apparently, matrix
polymerization leads to a more compact solid material and
more open porous space. As a result adsorption is enhanced
for highly polymerized structures. A recent article by Malo
et al [97] can be considered as a variation of this study, where
adsorption of a hard sphere fluid is considered in a disordered
quenched matrix of short chain molecules. Furthermore, one
can consider a strong association between matrix and fluid
species [98]. On one hand this is an interesting case that
models behaviour of adlayers in the case of strong matrix–fluid
interactions. On the other hand, models such as KM, where
there is a strong interaction between matrix and fluid and at the
same time significant size differences between fluid and matrix
particles, pose a significant challenge for the conventional ROZ
methods, with the solutions available only in high temperature,
low density regions. The AROZ treatment of this system may

alleviate this problem. Indeed, Trokhymchuk and co-workers
analyzed matrix–fluid and fluid–fluid two particle correlation
functions and found them in a reasonable agreement with the
Monte Carlo simulation results even for relatively high fluid
densities [98].

5. Perspectives

The adsorption of molecular species within disordered porous
materials is of great importance to a number of natural
and industrial processes. Modelling approaches tend to be
significantly more complex than those of bulk molecular fluids
or even molecular fluids within crystalline materials, owing to
the need to accurately account for pore structure. The pore
space generally forms in the absence of the fluid phase, and so
a challenge in terms of traditional molecular simulation is to
average over a sufficient number of material configurations. It
is in this respect that approaches based on the replica Ornstein–
Zernike (OZ) method are so valuable. Since properties of the
quenched–annealed system are expressed in terms of those of
a related fully annealed replica system, the resulting integral
equations are no more complicated than those of a mixture.
Thus, while enhanced computational resources during the last
few decades have resulted in the use of theoretical methods,
especially those based on OZ equations, declining somewhat in
the face of burgeoning molecular computer simulation studies,
OZ-based approaches may find their most important modern
application to be molecular adsorption in disordered materials.

That said, key challenges remain in adapting replica
OZ methods to realistically structured molecular systems.
All of the challenges addressed earlier in the study of
the liquid state—e.g. choice of closure and thermodynamic
route, handling/avoiding thermodynamic inconsistency—must
be addressed for these new systems. To date, most
efforts along these lines have been in the context of atomic
(i.e. spherically symmetric) systems. Especially challenging
may be developing closures for the fluid–fluid ‘blocking’ or
template–fluid correlation functions, where the intermolecular
potential is identically zero. These highly asymmetric
mixtures differ considerably from those upon which bulk
system closures have been historically developed. In addition,
classical closures such as PY neglect these correlations, an
obvious oversimplification. Adding to the challenge is the
frequent need to employ non-equilibrium material structures.
Ultimately, one would like clear guidelines towards accurate
closure relations and, in the presence of thermodynamic
inconsistencies, appropriate thermodynamic routes, for a
given set of system specifics. While significant, it would
appear this task is roughly on the same scale as developing
transferable intermolecular potentials capable of describing
thermodynamic and structural properties of a variety of
chemical species—an effort that is ongoing in several groups
with many promising results.

Some of the most interesting developments in material
science are anticipated to occur in the field of porous materials
with tailored characteristics and functionalities. Quite often, a
particular functionality of a porous material is a result of strong
and specific interactions between the material and adsorbate
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molecules. For example, the aforementioned imprinted
polymers are capable of molecular recognition based on
structural complementarity and strong interactions between the
guest molecule and the substrate. In order to develop integral
equation descriptions of these phenomena, it is important to
include in the theory both an appropriate treatment of the
molecular species and the possibility of strong associations
between matrix and adsorbate species. Naturally, this suggests
some combination of the site–site methods for quenched–
annealed systems and theories of association covered in this
review. Again, the development of these approaches will be
accompanied by a number of difficulties characteristic of all
integral equation methods, including availability of appropriate
closures and thermodynamic consistency, convergence issues
and the approximate nature of site–site theories. However,
because of the limitations inherent to simulation, we believe
that such theories are worth the effort and offer great promise
towards the development of novel, molecularly tailored porous
structures.
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